Please use this identifier to cite or link to this item:
https://dspace.crs4.it/jspui/handle/1138/32
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pintore, Giovanni | en_US |
dc.contributor.author | Agus, Marco | en_US |
dc.contributor.author | Almansa, Eva | en_US |
dc.contributor.author | Schneider, Jens | en_US |
dc.contributor.author | Gobbetti, Enrico | en_US |
dc.date.accessioned | 2021-06-21T07:20:00Z | - |
dc.date.available | 2021-06-21T07:20:00Z | - |
dc.date.issued | 2021-06 | - |
dc.identifier.uri | https://dspace.crs4.it/jspui/handle/1138/32 | - |
dc.description.abstract | We introduce a novel deep neural network to estimate a depth map from a single monocular indoor panorama. The network directly works on the equirectangular projection, exploiting the properties of indoor 360-degree images. Starting from the fact that gravity plays an important role in the design and construction of man-made indoor scenes, we propose a compact representation of the scene into vertical slices of the sphere, and we exploit long- and short-term relationships among slices to recover the equirectangular depth map. Our design makes it possible to maintain high-resolution information in the extracted features even with a deep network. The experimental results demonstrate that our method outperforms current state-of-the-art solutions in prediction accuracy, particularly for real-world data. | en_US |
dc.language.iso | en | en_US |
dc.relation | Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication | en_US |
dc.relation | VIGECLAB | en_US |
dc.subject | visual computing | en_US |
dc.subject | indoor reconstruction | en_US |
dc.subject | indoor panorama | en_US |
dc.title | SliceNet: deep dense depth estimation from a single indoor panorama using a slice-based representation | en_US |
dc.type | conference paper | en_US |
dc.relation.publication | Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) | en_US |
dc.contributor.affiliation | CRS4 | en_US |
dc.contributor.affiliation | HBKU | en_US |
dc.contributor.affiliation | CRS4 | en_US |
dc.contributor.affiliation | HBKU | en_US |
dc.contributor.affiliation | CRS4 | en_US |
dc.description.startpage | 11536 | en_US |
dc.description.endpage | 11545 | en_US |
dc.relation.grantno | 813170 | en_US |
dc.relation.grantno | POR FESR 2014-2020 | en_US |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.openairetype | conference paper | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_5794 | - |
crisitem.project.funder | EC | - |
crisitem.project.projectURL | www.evocation.eu | - |
crisitem.project.fundingProgram | H2020 | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/EC/H2020/813170 | - |
crisitem.author.dept | CRS4 | - |
crisitem.author.orcid | 0000-0002-7288-0989 | - |
crisitem.author.orcid | 0000-0003-0831-2458 | - |
Appears in Collections: | CRS4 publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
cvpr2021-slicenet.pdf | Green OA copy | 4,38 MB | Adobe PDF | View/Open |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.