Please use this identifier to cite or link to this item: https://dspace.crs4.it/jspui/handle/1138/32
DC FieldValueLanguage
dc.contributor.authorPintore, Giovannien_US
dc.contributor.authorAgus, Marcoen_US
dc.contributor.authorAlmansa, Evaen_US
dc.contributor.authorSchneider, Jensen_US
dc.contributor.authorGobbetti, Enricoen_US
dc.date.accessioned2021-06-21T07:20:00Z-
dc.date.available2021-06-21T07:20:00Z-
dc.date.issued2021-06-
dc.identifier.urihttps://dspace.crs4.it/jspui/handle/1138/32-
dc.description.abstractWe introduce a novel deep neural network to estimate a depth map from a single monocular indoor panorama. The network directly works on the equirectangular projection, exploiting the properties of indoor 360-degree images. Starting from the fact that gravity plays an important role in the design and construction of man-made indoor scenes, we propose a compact representation of the scene into vertical slices of the sphere, and we exploit long- and short-term relationships among slices to recover the equirectangular depth map. Our design makes it possible to maintain high-resolution information in the extracted features even with a deep network. The experimental results demonstrate that our method outperforms current state-of-the-art solutions in prediction accuracy, particularly for real-world data.en_US
dc.language.isoenen_US
dc.relationAdvanced Visual and Geometric Computing for 3D Capture, Display, and Fabricationen_US
dc.relationVIGECLABen_US
dc.subjectvisual computingen_US
dc.subjectindoor reconstructionen_US
dc.subjectindoor panoramaen_US
dc.titleSliceNet: deep dense depth estimation from a single indoor panorama using a slice-based representationen_US
dc.typeconference paperen_US
dc.relation.publicationProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.contributor.affiliationCRS4en_US
dc.contributor.affiliationHBKUen_US
dc.contributor.affiliationCRS4en_US
dc.contributor.affiliationHBKUen_US
dc.contributor.affiliationCRS4en_US
dc.description.startpage11536en_US
dc.description.endpage11545en_US
dc.relation.grantno813170en_US
dc.relation.grantnoPOR FESR 2014-2020en_US
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairetypeconference paper-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
crisitem.project.funderEC-
crisitem.project.projectURLwww.evocation.eu-
crisitem.project.fundingProgramH2020-
crisitem.project.openAireinfo:eu-repo/grantAgreement/EC/H2020/813170-
crisitem.author.deptCRS4-
crisitem.author.orcid0000-0002-7288-0989-
crisitem.author.orcid0000-0003-0831-2458-
Appears in Collections:CRS4 publications
Files in This Item:
File Description SizeFormat
cvpr2021-slicenet.pdfGreen OA copy4,38 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.