Please use this identifier to cite or link to this item: https://dspace.crs4.it/jspui/handle/1138/40
DC FieldValueLanguage
dc.contributor["European Union (EU)" and "Horizon 2020"]
dc.contributor.authorPintus, Ruggeroen_US
dc.contributor.authorGiachetti, Andreaen_US
dc.contributor.authorPintore, Giovannien_US
dc.contributor.authorGobbetti, Enricoen_US
dc.date.accessioned2017-09-25T07:57:19Z
dc.date.accessioned2020-11-09T17:07:57Z-
dc.date.available2017-09-25T07:57:19Z
dc.date.available2020-11-09T17:07:57Z-
dc.date.issued2017-09-
dc.identifier.urihttp://hdl.handle.net/1138/40-
dc.identifier.urihttp://www.crs4.it/vic/cgi-bin/bib-page.cgi?id=%27Pintus:2017:GRM%27-
dc.identifier.urihttp://dspace.crs4.it/jspui/handle/1138/40-
dc.description.abstractThe generation of a basic matte model is at the core of many multi-light reflectance processing approaches, such as Photometric Stereo or Reflectance Transformation Imaging. To recover information on objects’ shape and appearance, the matte model is used directly or combined with specialized methods for modeling high-frequency behaviors. Multivariate robust regression offers a general solution to reliably extract the matte component when source data is heavily contaminated by shadows, inter-reflections, specularity, or noise. However, robust multivariate modeling is usually very slow. In this paper, we accelerate robust fitting by drastically reducing the number of tested candidate solutions using a guided approach. Our method propagates already known solutions to nearby pixels using a similarity-driven flood-fill strategy, and exploits this knowledge to order possible candidate solutions and to determine convergence conditions. The method has been tested on objects with a variety of reflectance behaviors, showing state-of-the-art accuracy with respect to current solutions, and a significant speed-up without accuracy reduction with respect to multivariate robust regression.en_US
dc.description.sponsorshipTerms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091en_US
dc.description.sponsorshipSardinian Regional Authorities under projects VIGEC and Vis&VideoLab
dc.language.isoenen_US
dc.publisherBritish Machine Vision Associationen_US
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/665091/EU/Scan4Reco/Scan4Reco/
dc.rightsBritish Machine Vision Association
dc.rights.uriinfo:eu-repo/semantics/openAccess
dc.sourceBritish Machine Vision Conference 2017
dc.subjectReflectance Transformation Imagingen_US
dc.subjectPhotometric Stereoen_US
dc.subjectRobust statisticsen_US
dc.subjectMultivariate Robust Regressionen_US
dc.subjectMatte-model Fittingen_US
dc.titleGuided Robust Matte-Model Fitting for Accelerating Multi-light Reflectance Processing Techniquesen_US
dc.typetexten_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypetext-
crisitem.author.orcid0000-0003-1786-7068-
crisitem.author.orcid0000-0003-0831-2458-
Appears in Collections:CRS4 publications
Files in This Item:
File Description SizeFormat
bmvc2017-guidedrobustfitting.pdfMain article1,57 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.