Please use this identifier to cite or link to this item: https://dspace.crs4.it/jspui/handle/1138/43
DC FieldValueLanguage
dc.contributor.authorPintus, Ruggeroen_US
dc.contributor.authorYang, Yingen_US
dc.contributor.authorRushmeier, Hollyen_US
dc.contributor.authorGobbetti, Enricoen_US
dc.date.accessioned2017-09-25T14:07:19Z
dc.date.accessioned2020-11-09T17:07:59Z-
dc.date.available2017-09-25T14:07:19Z
dc.date.available2020-11-09T17:07:59Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/1138/43-
dc.identifier.urihttp://dspace.crs4.it/jspui/handle/1138/43-
dc.description.abstractMassive digital acquisition and preservation of deteriorating historical and artistic documents is of particular importance due to their value and fragile condition. The study and browsing of such digital libraries is invaluable for scholars in the Cultural Heritage field, but requires automatic tools for analyzing and indexing these datasets. We will describe a set of completely automatic solutions to estimate per-page text leading, to extract text lines, blocks and other layout elements, and to perform query-by-example word-spotting on medieval manuscripts. Those techniques have been evaluated on a huge heterogeneous corpus of illuminated medieval manuscripts of different writing styles, languages, image resolutions, amount of illumination and ornamentation, and levels of conservation, with various problematic issues such as holes, spots, ink bleed-through, ornamentation, and background noise. We also present a quantitative analysis to better assess the quality of the proposed algorithms. By not requiring any human intervention to produce a large amount of annotated training data, the developed methods provide Computer Vision researchers and Cultural Heritage practitioners with a compact and efficient system for document analysis.en_US
dc.description.sponsorshipTerms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091en_US
dc.language.isoenen_US
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/665091/EU/Scan4Reco/Scan4Reco/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectSemantic Feature Extractionen_US
dc.subjectMedieval Manuscripten_US
dc.subjectDocument Layout Analysisen_US
dc.subjectWord spottingen_US
dc.subjectMulti-spectral analysisen_US
dc.titleAutomatic Algorithms for Medieval Manuscript Analysisen_US
dc.typetexten_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypetext-
crisitem.author.orcid0000-0003-1786-7068-
crisitem.author.orcid0000-0001-5241-0886-
crisitem.author.orcid0000-0003-0831-2458-
Appears in Collections:CRS4 publications
Files in This Item:
File Description SizeFormat
igs2017-manuscripts.pdfMain article168,88 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.